Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microcirculation ; 30(5-6): e12817, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248193

RESUMO

OBJECTIVE: Microvascular remodeling is governed by biomechanical and biochemical cues which are dysregulated in idiopathic pulmonary fibrosis. Understanding how these cues impact endothelial cell-pericyte interactions necessitates a model system in which both variables can be independently and reproducibly modulated. In this study we develop a tunable hydrogel-based angiogenesis assay to study how varying angiogenic growth factors and environmental stiffness affect sprouting and vessel organization. METHODS: Lungs harvested from mice were cut into 1 mm long segments then cultured on hydrogels having one of seven possible stiffness and growth factor combinations. Time course, brightfield, and immunofluorescence imaging were used to observe and quantify sprout formation. RESULTS: Our assay was able to support angiogenesis in a comparable manner to Matrigel in soft 2 kPa gels while enabling tunability to study the effects of stiffness on sprout formation. Matrigel and 2 kPa groups contained significantly more samples with sprouts when compared to the stiffer 10 and 20 kPa gels. Growth factor treatment did not have as obvious an effect, although the 20 kPa PDGF + FGF-treated group had significantly longer vessels than the vascular endothelial growth factor-treated group. CONCLUSIONS: We have developed a novel, tunable hydrogel assay for the creation of lung explant vessel organoids which can be modulated to study the impact of specific environmental cues on vessel formation and maturation.


Assuntos
Fibrose Pulmonar Idiopática , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Pericitos , Hidrogéis/farmacologia , Neovascularização Fisiológica
2.
Ann Plast Surg ; 88(5 Suppl 5): S466-S472, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502953

RESUMO

BACKGROUND: Acellular dermal matrix (ADM) supported implant-based reconstruction remains the most commonly performed mode of reconstruction after breast cancer. Acellular dermal matrix clinical usage has reported benefits but requires rapid and efficient vascular and cellular incorporation into the recipient to have the best outcomes. Orderly transition from M1 to M2 macrophage phenotypic profile, coordinated in part by interleukin 4 (IL-4), is an important component of vascular stabilization and remodeling. Using the ADM substrate as a delivery device for immunomodulation of macrophage phenotype holds the potential to improve integration. METHODS: Interleukin 4 was adsorbed onto ADM samples and drug elution curves were measured. Next, experimental groups of 8 C57BL/6 mice had 5-mm ADM discs surgically placed in a dorsal window chamber with a vascularized skin flap on one side and a plastic cover slip on the other in a model of implant-based breast reconstruction. Group 1 consisted of IL-4 (5 µg) adsorbed into the ADM preoperatively and group 2 consisted of an untreated ADM control. Serial gross examinations were performed with histology at day 21 for markers of vascularization, mesenchymal cell infiltration, and macrophage lineage. RESULTS: Drug elution curves showed sustained IL-4 release for 10 days after adsorption. Serial gross examination showed similar rates of superficial vascular investment of the ADM beginning at the periphery by day 14 and increasing through day 21. Interleukin-4 treatment led to significantly increased CD31 staining of vascular endothelial cells within the ADM over the control group (P < 0.05) at 21 days. Although vimentin staining did not indicate a significant increase in fibroblasts overall, IL-4 did result in a significant increase in expression of α-smooth muscle actin. The expression of macrophage phenotype markers Arginase1 and iNOS present within the ADM were not significantly affected by IL-4 treatment at the day 21 time point. CONCLUSIONS: Acellular dermal matrix has the potential to be used for immunomodulatory cytokine delivery during the timeframe of healing. Using implanted ADM as a delivery vehicle to drive IL-4 mediated angiogenesis and vascular remodeling significantly enhanced vascularity within the ADM substrate.


Assuntos
Derme Acelular , Interleucina-4 , Derme Acelular/efeitos dos fármacos , Animais , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Imunomodulação , Interleucina-4/imunologia , Interleucina-4/farmacocinética , Interleucina-4/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Remodelação Vascular
3.
Sci Rep ; 10(1): 15808, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978500

RESUMO

Retinal diseases are frequently characterized by the accumulation of excessive scar tissue found throughout the neural retina. However, the pathophysiology of retinal fibrosis remains poorly understood, and the cell types that contribute to the fibrotic response are incompletely defined. Here, we show that myofibroblast differentiation of mural cells contributes directly to retinal fibrosis. Using lineage tracing technology, we demonstrate that after chemical ocular injury, Myh11+ mural cells detach from the retinal microvasculature and differentiate into myofibroblasts to form an epiretinal membrane. Inhibition of TGFßR attenuates Myh11+ retinal mural cell myofibroblast differentiation, and diminishes the subsequent formation of scar tissue on the surface of the retina. We demonstrate retinal fibrosis within a murine model of oxygen-induced retinopathy resulting from the intravitreal injection of adipose Myh11-derived mesenchymal stem cells, with ensuing myofibroblast differentiation. In this model, inhibiting TGFßR signaling does not significantly alter myofibroblast differentiation and collagen secretion within the retina. This work shows the complexity of retinal fibrosis, where scar formation is regulated both by TGFßR and non-TGFßR dependent processes involving mural cells and derived mesenchymal stem cells. It also offers a cautionary note on the potential deleterious, pro-fibrotic effects of exogenous MSCs once intravitreally injected into clinical patients.


Assuntos
Diferenciação Celular , Cicatriz/patologia , Fibrose/patologia , Células-Tronco Mesenquimais/patologia , Miofibroblastos/patologia , Cadeias Pesadas de Miosina/metabolismo , Doenças Retinianas/patologia , Animais , Células Cultivadas , Cicatriz/metabolismo , Feminino , Fibrose/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Doenças Retinianas/metabolismo , Transdução de Sinais
4.
CPT Pharmacometrics Syst Pharmacol ; 9(7): 384-394, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32438492

RESUMO

Intradermal delivery of AZD8601, an mRNA designed to produce vascular endothelial growth factor A (VEGF-A), has previously been shown to accelerate cutaneous wound healing in a murine diabetic model. Here, we develop population pharmacokinetic and pharmacodynamic models aiming to quantify the effect of AZD8601 injections on the dynamics of wound healing. A dataset of 584 open wound area measurements from 131 mice was integrated from 3 independent studies encompassing different doses, dosing timepoints, and number of doses. Evaluation of several candidate models showed that wound healing acceleration is not likely driven directly by time-dependent VEGF-A concentration. Instead, we found that administration of AZD8601 induced a sustained acceleration of wound healing depending on the accumulated dose, with a dose producing 50% of the maximal effect of 92 µg. Simulations with this model showed that a single dose of 200 µg AZD8601 can reduce the time to reach 50% wound healing by up to 5 days.


Assuntos
Diabetes Mellitus Experimental/terapia , RNA Mensageiro/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/genética , Animais , Diabetes Mellitus Experimental/complicações , Camundongos , Modelos Biológicos , RNA Mensageiro/genética , Fatores de Tempo
5.
Sci Rep ; 8(1): 17509, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504800

RESUMO

Capable of mediating efficient transfection and protein production without eliciting innate immune responses, chemically modified mRNA holds great potential to produce paracrine factors at a physiologically beneficial level, in a spatiotemporally controlled manner, and with low toxicity. Although highly promising in cardiovascular medicine and wound healing, effects of this emerging therapeutic on the microvasculature and its bioactivity in disease settings remain poorly understood. Here, we longitudinally and comprehensively characterize microvascular responses to AZD8601, a modified mRNA encoding vascular endothelial growth factor A (VEGF-A), in vivo. Using multi-parametric photoacoustic microscopy, we show that intradermal injection of AZD8601 formulated in a biocompatible vehicle results in pronounced, sustained and dose-dependent vasodilation, blood flow upregulation, and neovessel formation, in striking contrast to those induced by recombinant human VEGF-A protein, a non-translatable variant of AZD8601, and citrate/saline vehicle. Moreover, we evaluate the bioactivity of AZD8601 in a mouse model of diabetic wound healing in vivo. Using a boron nanoparticle-based tissue oxygen sensor, we show that sequential dosing of AZD8601 improves vascularization and tissue oxygenation of the wound bed, leading to accelerated re-epithelialization during the early phase of diabetic wound healing.


Assuntos
Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Microvasos/metabolismo , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/genética , Animais , Angiopatias Diabéticas/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Camundongos , Microvasos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/genética , Consumo de Oxigênio , Imagem com Lapso de Tempo , Cicatrização/efeitos dos fármacos
6.
Sci Rep ; 7(1): 447, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28348370

RESUMO

Successful tissue repair requires the activities of myeloid cells such as monocytes and macrophages that guide the progression of inflammation and healing outcome. Immunoregenerative materials leverage the function of endogenous immune cells to orchestrate complex mechanisms of repair; however, a deeper understanding of innate immune cell function in inflamed tissues and their subsequent interactions with implanted materials is necessary to guide the design of these materials. Blood monocytes exist in two primary subpopulations, characterized as classical inflammatory or non-classical. While classical monocytes extravasate into inflamed tissue and give rise to macrophages or dendritic cells, the recruitment kinetics and functional role of non-classical monocytes remains unclear. Here, we demonstrate that circulating non-classical monocytes are directly recruited to polymer films within skin injuries, where they home to a perivascular niche and generate alternatively activated, wound healing macrophages. Selective labeling of blood monocyte subsets indicates that non-classical monocytes are biased progenitors of alternatively activated macrophages. On-site delivery of the immunomodulatory small molecule FTY720 recruits S1PR3-expressing non-classical monocytes that support vascular remodeling after injury. These results elucidate a previously unknown role for blood-derived non-classical monocytes as contributors to alternatively activated macrophages, highlighting them as key regulators of inflammatory response and regenerative outcome.


Assuntos
Macrófagos/patologia , Monócitos/patologia , Lesões dos Tecidos Moles/patologia , Células-Tronco/patologia , Cicatrização , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Implantes Experimentais , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Pele/irrigação sanguínea , Pele/patologia , Cicatrização/efeitos dos fármacos
7.
Stem Cells Transl Med ; 4(5): 459-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769654

RESUMO

Diabetic retinopathy is characterized by progressive vascular dropout with subsequent vision loss. We have recently shown that an intravitreal injection of adipose-derived stem cells (ASCs) can stabilize the retinal microvasculature, enabling repair and regeneration of damaged capillary beds in vivo. Because an understanding of ASC status from healthy versus diseased donors will be important as autologous cellular therapies are developed for unmet clinical needs, we took advantage of the hyperglycemic Akimba mouse as a preclinical in vivo model of diabetic retinopathy in an effort aimed at evaluating therapeutic efficacy of adipose-derived stem cells (mASCs) derived either from healthy, nondiabetic or from diabetic mice. To these ends, Akimba mice received intravitreal injections of media conditioned by mASCs or mASCs themselves, subsequent to development of substantial retinal capillary dropout. mASCs from healthy mice were more effective than diabetic mASCs in protecting the diabetic retina from further vascular dropout. Engrafted ASCs were found to preferentially associate with the retinal vasculature. Conditioned medium was unable to recapitulate the vasoprotection seen with injected ASCs. In vitro diabetic ASCs showed decreased proliferation and increased apoptosis compared with healthy mASCs. Diabetic ASCs also secreted less vasoprotective factors than healthy mASCs, as determined by high-throughput enzyme-linked immunosorbent assay. Our findings suggest that diabetic ASCs are functionally impaired compared with healthy ASCs and support the utility of an allogeneic injection of ASCs versus autologous or conditioned media approaches in the treatment of diabetic retinopathy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/terapia , Transplante de Células-Tronco , Adipócitos/citologia , Animais , Meios de Cultivo Condicionados , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Camundongos , Células-Tronco/citologia
8.
Arterioscler Thromb Vasc Biol ; 34(9): 2012-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969773

RESUMO

OBJECTIVE: Chronic arterial occlusion results in arteriogenesis of collateral blood vessels. This process has been shown to be dependent on the recruitment of growth-promoting macrophages to remodeling collaterals. However, the potential role of venules in monocyte recruitment during microvascular arteriogenesis is not well demonstrated. First, we aim to document that arteriogenesis occurs in the mouse spinotrapezius ligation model. Then, we investigate the temporal and spatial distribution, as well as proliferation, of monocytes/macrophages recruited to collateral arterioles in response to elevated fluid shear stress. APPROACH AND RESULTS: Laser speckle flowmetry confirmed a postligation increase in blood velocity within collateral arterioles but not within venules. After 72 hours post ligation, collateral arteriole diameters were increased, proliferating cells were identified in vessel walls of shear-activated collaterals, and perivascular CD206(+) macrophages demonstrated proliferation. A 5-ethynyl-2'-deoxyuridine assay identified proliferation. CD68(+)CD206(+) cells around collaterals were increased 96%, whereas CX3CR1((+/GFP)) cells were increased 126% in ligated versus sham groups after 72 hours. CX3CR1((+/GFP)) cells were predominately venule associated at 6 hours after ligation; and CX3CR1((+/GFP hi)) cells shifted from venule to arteriole associated between 6 and 72 hours after surgery exclusively in ligated muscle. We report accumulation and extravasation of adhered CX3CR1((+/GFP)) cells in and from venules, but not from arterioles, after ligation. CONCLUSIONS: Our results demonstrate that arteriogenesis occurs in the murine spinotrapezius ligation model and implicate postcapillary venules as the site of tissue entry for circulating monocytes. Local proliferation of macrophages is also documented. These data open up questions about the role of arteriole-venule communication during monocyte recruitment.


Assuntos
Isquemia/fisiopatologia , Monócitos/fisiologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Vênulas/patologia , Animais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Arteríolas , Receptor 1 de Quimiocina CX3C , Divisão Celular , Endotélio Vascular/patologia , Feminino , Genes Reporter , Hemorreologia , Fluxometria por Laser-Doppler , Lectinas Tipo C/análise , Ligadura , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/análise , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Receptores de Superfície Celular/análise , Receptores de Quimiocinas/análise , Receptores de Quimiocinas/genética
9.
Arterioscler Thromb Vasc Biol ; 30(4): 809-17, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20110576

RESUMO

OBJECTIVE: Activated endothelium and increased monocyte-endothelial interactions in the vessel wall are key early events in atherogenesis. ATP binding cassette (ABC) transporters play important roles in regulating sterol homeostasis in many cell types. Endothelial cells (EC) have a high capacity to efflux sterols and express the ABC transporter, ABCG1. Here, we define the role of ABCG1 in the regulation of lipid homeostasis and inflammation in aortic EC. METHODS AND RESULTS: Using EC isolated from ABCG1-deficient mice (ABCG1 KO), we observed reduced cholesterol efflux to high-density lipoprotein compared to C57BL/6 (B6) EC. However, total cholesteryl ester levels were not changed in ABCG1 KO EC. Secretions of KC, MCP-1, and IL-6 by ABCG1 KO EC were significantly increased, and surface expressions of intercellular adhesion molecule-1 and E-selectin were increased several-fold on ABCG1 KO EC. Concomitant with these findings, we observed a 4-fold increase in monocyte adhesion to the intact aortic endothelium of ABCG1 KO mice ex vivo and to isolated aortic EC from these mice in vitro. In a gain-of-function study in vitro, restoration of ABCG1 expression in ABCG1 KO EC reduced monocyte-endothelial interactions. Utilizing pharmacological inhibitors for STAT3 and the IL-6 receptor, we found that blockade of STAT3 and IL-6 receptor signaling in ABCG1 KO EC completely abrogated monocyte adhesion to ABCG1 KO endothelium. CONCLUSIONS: ABCG1 deficiency in aortic endothelial cells activates endothelial IL-6-IL-6 receptor-STAT3 signaling, thereby increasing monocyte-endothelial interactions and vascular inflammation.


Assuntos
Adesão Celular , Células Endoteliais/metabolismo , Inflamação/metabolismo , Lipoproteínas/deficiência , Monócitos/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Quimiotaxia , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Selectina E/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 28(11): 2003-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18688018

RESUMO

OBJECTIVE: Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) has recently been shown to form an essential element of a mechanosensory complex that mediates endothelial responses to fluid shear stress. The aim of this study was to determine the in vivo role of PECAM-1 in atherosclerosis. METHODS AND RESULTS: We crossed C57BL/6 Pecam1(-/-) mice with apolipoprotein E-deficient (Apoe(-/-)) mice. On a Western diet, Pecam1(-/-)Apoe(-/-) mice showed reduced atherosclerotic lesion size compared to Apoe(-/-) mice. Striking differences were observed in the lesser curvature of the aortic arch, an area of disturbed flow, but not in the descending thoracic or abdominal aorta. Vascular cell adhesion molecule-1 (VCAM-1) expression, macrophage infiltration, and endothelial nuclear NF-kappaB were all reduced in Pecam1(-/-)Apoe(-/-) mice. Bone marrow transplantation suggested that endothelial PECAM-1 is the main determinant of atherosclerosis in the aortic arch, but that hematopoietic PECAM-1 promotes lesions in the abdominal aorta. In vitro data show that siRNA-based knockdown of PECAM-1 attenuates endothelial NF-kappaB activity and VCAM-1 expression under conditions of atheroprone flow. CONCLUSIONS: These results indicate that endothelial PECAM-1 contributes to atherosclerotic lesion formation in regions of disturbed flow by regulating NF-kappaB-mediated gene expression.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Células Cultivadas , Gorduras na Dieta , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fluxo Sanguíneo Regional , Estresse Mecânico , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
J Immunol ; 181(2): 1357-64, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606690

RESUMO

IL-23 and IL-17A regulate granulopoiesis through G-CSF, the main granulopoietic cytokine. IL-23 is secreted by activated macrophages and dendritic cells and promotes the expansion of three subsets of IL-17A-expressing neutrophil-regulatory T (Tn) cells; CD4(-)CD8(-)alphabeta(low), CD4(+)CD8(-)alphabeta(+) (Th17), and gammadelta(+) T cells. In this study, we investigate the effects of IL-17A on circulating neutrophil levels using IL-17R-deficient (Il17ra(-/-)) mice and Il17ra(-/-)Itgb2(-/-) mice that lack both IL-17R and all four beta(2) integrins. IL-17R deficiency conferred a reduction in neutrophil numbers and G-CSF levels, as did Ab blockade against IL-17A in wild-type mice. Bone marrow transplantation revealed that IL-17R expression on nonhemopoietic cells had the greatest effects on regulating blood neutrophil counts. Although circulating neutrophil numbers were reduced, IL-17A expression, secretion, and the number of IL-17A-producing Tn cells were elevated in Il17ra(-/-) and Il17ra(-/-)Itgb2(-/-) mice, suggesting a negative feedback effect through IL-17R. The negative regulation of IL-17A-producing T cells and IL-17A and IL-17F gene expression through the interactions of IL-17A or IL-17F with IL-17R was confirmed in splenocyte cultures in vitro. We conclude that IL-17A regulates blood neutrophil counts by inducing G-CSF production mainly in nonhemopoietic cells. IL-17A controls the expansion of IL-17A-producing Tn cell populations through IL-17R.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Neutrófilos/fisiologia , Receptores de Interleucina-17/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Polaridade Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Contagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
12.
J Leukoc Biol ; 80(6): 1491-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16997858

RESUMO

During inflammation, leukocytes roll along the wall of postcapillary venules scanning the surface for immobilized CXCL1, a chemokine that triggers firm adhesion by activating CXCR2 on the neutrophil. PI-3K are signaling molecules important in cellular processes, ranging from cellular differentiation to leukocyte migration. PI-3Kgamma can be activated directly by the betagamma dimer of heterotrimeric G proteins coupled to CXCR2. Here, we used in vivo and ex vivo intravital microscopy models to test the role of PI-3Kgamma in leukocyte arrest. PI-3Kgamma null mice showed an 80% decrease in CXCL1-induced leukocyte adhesion in venules of the exteriorized mouse cremaster muscle. In wild-type mice, rolling leukocytes showed rapid and sustained adhesion, but in PI-3Kgamma(-/-) mice, adhesion was not triggered at all or was transient, suggesting that absence of PI-3Kgamma interferes with integrin bond strengthening. Wild-type mice reconstituted with PI-3Kgamma null bone marrow showed a 50% decrease in CXCL1-induced leukocyte adhesion. In a blood-perfused micro-flow chamber, leukocytes from PI-3Kgamma(-/-) mice showed a defect in adhesion on a P-selectin/ICAM-1/CXCL1 substrate, indicating that leukocyte PI-3Kgamma was required for adhesion. The adhesion defect in PI-3Kgamma(-/-) mice was as severe as that in mice lacking LFA-1, the major integrin responsible for neutrophil adhesion. We conclude that the gamma isoform of PI-3K must be functional in leukocytes to allow efficient adhesion from rolling in response to chemokine stimulation.


Assuntos
Quimiocinas CXC/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Leucócitos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Quimiocina CXCL1 , Quimiocinas CXC/farmacologia , Classe Ib de Fosfatidilinositol 3-Quinase , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Isoenzimas/deficiência , Isoenzimas/metabolismo , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Leucócitos/citologia , Camundongos , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Selectina-P/metabolismo , Fosfatidilinositol 3-Quinases/deficiência , Vênulas/citologia , Vênulas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA